
JOURNAL OF COMPUTATIONAL PHYSICS %, 1-14 (1991)

A Dynamic Load-Balancing Algorithm for
Molecular Dynamics Simulation on Multi-processor Systems

J. E. BOILLAT

Institute of Informatics and Applied Mathematics, University of Bern,
Liinggassstrasse 51, CH-3012 Bern, Switzerland

F. BRUGE

Department of Physics, University of Palermo,
Via Archirafi 36, I-90123 Palermo, Italy

AND

P. G. KROPF

Institute of Informatics and Applied Mathematics, University of Bern.
Liinggassstrasse 51, CH-3012 Bern, Switzerland

Received November 22, 1989; revised June 5, 1990

A new algorithm for dynamic load-balancing on multi-processor systems and its application
to the molecular dynamics simulation of the spinodal phase separation are presented. The
load-balancer is distributed among the processors and embedded in the application itself.
Tests performed on a transputer network show that the load-balancer behaves almost ideally
in this application. The same approach can be easily extended to different multi-processor
topologies or applications. (0 1991 Academic Press, Inc.

1. INTRODUCTION

The balancing of the workload among the processors of a parallel computer
system is central to achieve high performance. The load-balancing problem
presents, in general, two aspects which have to be taken into account:

l The underlying architecture of the system used. This includes the topology
of the multi-processor system and the possibilities of the processor interconnections.
In the simplest case there is a predefined fixed and usually homogeneous topology,
e.g., a hypercube scheme [l]. More flexible systems allow for a dynamic or static
reconfiguration of the interprocessor connections [2]. Clearly the load-balancing
problem is easier to solve if the topology is fixed and homogeneous during
computation [3 1.

1
0021-9991/91 $3.00

Copyright 0 1991 by Academic Press, Inc.
,411 rights 01 reproduction in any form reserved.

2 BoILLAT,BRUGe,AND KROPF

l The application to be run on the target system. The load-balacing problem
is relatively easy to solve in the case of a homogeneous computational problem
where each member of the underlying data domain is associated with a similar
complexity in time (i.e., calculation time) and where the member distribution in
the domain does not change during the computation (i.e., a static data distribution).
This is the case, e.g., for spin lattice simulations [4] and equilibrium simulation
of mobile objects [S, 6, IO]. For problems where either the data distribution or
the member time complexity or both change during the computation, more
complex methods have to be devised to dynamically reallocate the workload of the
processors in order to achieve a well-balanced overall load of the system and thus
a high efficiency [3].

In this paper we describe a new algorithm for dynamic load-balancing and its
application to the molecular dynamics (MD) simulation of the spinodal phase
separation of a two-dimensional fluid. The load-balancer is distributed among the
processors and embedded in the application itself. The target system is a transputer
network [7] organized as a ring; i.e., the topology is fixed and homogeneous. Thus
the description and investigations of the algorithm will focus on the embedding and
behavior of the algorithm in the chosen application of MD simulations. However,
this approach is not limited to a particular multi-processor topology or application
[S, 31. Following the same approach a simpler algorithm has already been
implemented which can be slower in critical conditions [9].

2. MOLECULAR DYNAMICS SIMULATION ON A MULTI-PROCESSOR SYSTEM

The molecular dynamics simulation of the spinodal phase separation of a
two-dimensional fluid involves systems where the range of correlations is many
times the range of the potential, and very large numbers of particles (tens or hun-
dreds of thousands) are required [6]. This kind of simulation can be handled on
MIMD computers, by decomposing the simulation box into equal-area rectangular
domains, and assigning one of them to each processor, thereby avoiding the need
to consider widely-separated particle pairs [4, 111. Such a domain structure for
eight processors is shown in Fig. IA, where a typicai initial configuration of a
system consisting of 4050 Lennard-Jones particles [12) is reported. The horizontal
strips represent domains attributed to different processors. In what follows we shall
indicate as population of a processor the number of particles belonging to its
domain. In the exploded inset of Fig. 1, details of the boundary regions between
two adjacent domains are shown. They are delimited by dashed lines one cutoff
length apart from the domain boundary (solid line). Within these regions, particles
belonging to a given processor interact with particles attributed to the neighboring
processor. Therefore, the coordinates of these particles have to be exchanged
between neighboring processors at each integration step. To make this communica-
tion efficient a ring topology is usually chosen for the inter-processor connections.

A DISTRIBUTED DYNAMIC LOAD-BALANCER 3

FIG. 1. (A) Typical initial configuration for the molecular dynamics simulation of a two-dimensional
system involving 4050 Lennard-Jones particles, which undergoes a spinodal phase separation. The
simulation box is subdivided into eight rectangular domains which are attributed to the eight ring-con-
nected transputers constituting a MIMD computer. (B) Exploded view of the boundary region between
two adjacent domains. (C) Final configuration reached after 100,000 integration steps (equivalent to a
simulated time of 1 ns) keeping constant the domain limits. (D) The same tinal configuration as in (C)
obtained while the load-balancer is active, which causes a different domain sizing in order to optimize
the processor workload.

As the simulation proceeds, the system undergoes the spinodal separation
developing a cluster structure, which could result in a performance impact, if the
initial equal-area decomposition is maintained (Fig. 1C). Indeed, processors which
happen to be responsible for domains containing few particles have only little to do;
they update their particle coordinates and have to wait until the neighboring
processors are ready to communicate. Therefore, to keep the overall performance of
the parallel computer as high as possible throughout the whole simulation, we are
faced with the problem of dynamically reallocating particles among processors.

3. DYNAMIC LOAD BALANCING IN AN APPLICATION

To achieve the best possible overall performance of a parallel system during the
entire duration of the application a load-balancer process is usually run con-
currently with the main application [131. This feature is generally assumed as
essential for the design of a dynamic load-balancer [141, which then can be
implemented according to many different schemes [131. Among these, the method

4 BOILLAT, BRUGi, AND KROPF

of stimulated annealing [151 can be used to search for the optimal load-balancing
for “irregular” problems such as the simulation of phase transitions, assuming as
the objective energy function to be minimized, the maximum workload per
processor. However, since the annealing procedure steals computational time away
from the principal computational task of interest, a difficult compromise has to be
reached between the following requirements: the annealing procedure should be
rapid enough to closely track the computation, which, on the other hand, should
not be unreasonably slowed down by the procedure itself.

Common to these load-balancing methods is the global control of the processors’
workload. The decision to rearrange the domains, i.e., to move particles from one
processor to its neighbors in such a way that they will have about the same number
of particles, is made by a central control process. This means that a dynamic load-
balancer based on common optimization techniques, like simulated annealing, is
driven by the minimization of a global function. This can strongly influence the
efficiency of an application run on a distributed system, because the control process
needs to know enough information about all the processors in order to make a
balancing decision and it must advise the processor whether or not to exchange
particles, i.e., to change their domain. These approaches thus imply a certain con-
tradiction: the application is distributed over a multi-processor network without
any global control, but the load-balancing requirements introduce a new globality
again. In other words, the global control mechanism is contradictory to the ideas
of parallel MIMD systems and algorithms.

These considerations prompted us to devise a new approach to load-balancing,
where the load-balancer is distributed among the processors and where it is embedded
within the application itself. According to this method, every processor along its
normal computational cycle decides whether to give particles to its neighbors
moving its upper and/or lower strip limits so as to maintain the population nearly
equal to those of this neighbors. This decision is taken by each processor locally.
As far as the load-balancer is concerned, each processor knows only the population
of its immediate neighbors and its own. The domain of a processor is thereafter
changed in order to reach a local equilibrium. In each computational cycle of the
application all processors try in parallel to reach a local balance of the workload
with respect to their neighbors. After a reasonable number of cycles, which in the
worst case is quadratic to the number of processors, a global equilibrium, and thus
a globally balanced situation, with populations of a similar size will be reached.

This approach has an analogy in physics: Imagine as a limiting case all particles
assigned to one processor in the pipeline’ and all the other processors having no
population. Particles will dissipate by means of the load-balancer throughout the
pipeline in a way that closely resembles the diffusion of heat in a bar without heat
exchange with the environment. In fact it is possible to give a formal description of

‘The distributed MD simulation algorithm is based on a ring topology to satisfy boundary condi-
tions. However, for the load-balancing algorithm only a pipeline out of the ring is relevant (refer to
Fig. 2).

ADISTRIBUTED DYNAMIC LOAD-BALANCER 5

FIG. 2. Transputer network consisting of one I/O processor and eight worker processors. For the
load-balancer only the pipeline of the workers is relevant, whereas for the MD simulation the workers’
ring is used.

the proposed algorithm in terms of a discrete Poisson equation [S]. The numerical
solution of a discrete Poisson equation indeed leads to the same iteration scheme
as that for the proposed load-balancer.

The distributed load-balancing algorithm is designed such that, on each
processor of the system, one and the same balancing procedure runs in parallel
embedded in the application itself. Figure 3 shows the structure of the load-balancer
algorithm in pseudo-code (Occam-like [161). The diffusion of the load or the num-
ber of particles to be moved from one processor to another processor is controlled
by the load differences between a processor and its neighbors and, additionally, by
a weighing factor.

4. LOAD-BALANCED MOLECULAR DYNAMICS SIMULATION ALGORITHM

To understand how the dynamic load-balancer has been embedded in the MD
algorithm it is worth noting that in any geometric parallel decomposition of local
dynamics problems there is one main synchronization event among processors at

PROC load.balancer()
SW

. . . initialize
SEQ i = 0 FOR cycles

SE9
. . . application
. . . exchange load information with neighbors
VAL old.population IS my.population :
SEQ k = 0 FOR neighbors

VAL to.move IS (old.population - neighbor. populat ion [k])/weight :
IF

to.move > threshold
SE’4

my. populat ion := my.population - to.move
move.population[k] := to.move

TRUE
move.population := 0

. . . exchange move.population with neighbors

FIG. 3. Distributed load-balancer.

6 BOILLAT, BRUGk, AND KROPF

each integration step, i.e., tne exchange of boundary and incominggoutgoing
particles.

Each processor determines whether a particle has left its domain or is still
remaining in it by checking its position with respect to the limits of its region just
before exchanging particles. So, if the load-balancer wants to move particles from
one processor to another it has to move the boundary limit between them before
particles are recognized as internal or external to a processor domain and
exchanged. The actuation part of the load balancer algorithm, i.e., the part in which
the limits are actually moved must then precede the particle exchange procedure of
the MD algorithm. On the other hand, if the load-balancer has to closely track the
computation it has to work with up-to-date populations, i.e., with populations just
computed after the particle exchange.

These considerations explain why the load-balancer code has been split into two
parts whose relative position with respect to the main procedures of the iterative
part of the concurrent MD program is shown in Fig. 4. Lines (folds) with
comments in capital letter contain the actuation (CHANGE BOUNDARY LIMITS)
and the decision part (COMPUTE NEW BOUNDARY LIMITS), respectively, of the
load-balancer algorithm.

Acting in this way, the redistribution of particle coordinates among processors,
required by the load-balancer, does not imply any further communication imposed
synchronization event, varying solely the quantity of data normally transmitted in
the particle exchange routine of the MD program.

To obtain the desired particle redistribution the load-balancer obviously cannot
actually change particle positions but moves boundary limits between processors.
Once the load-balancer has stated the amount of particles a processor has to send
to its neighbor, it starts to diminish the processor’s domain by trying to put back-
ward the limit by a predefined small quantity (de1 ta in Fig. 5) and checks at each
trial how many particles would result outgone. As soon as the number of outgoing
particles equals or exceeds the desired amount it stops and communicates the new
limit to the involved neighbor. There is only one constraint the load-balancer has
to take into account: the domains cannot become too small with respect to the
boundary regions.

WHILE cycling
SW

. . . calculate particle interactions

. . . update particle positions

. , . CHABCE BOUHDARY LIHITS

. I . exchange boundary and incoming - outgoing
particles with neighboring processors

. . . adjust coordinate matrix to
maintain the data structure

. . . COHPUTE IEY BOUBDARY LIMITS

FIG. 4. MD simulation with integrated load-balancer.

ADISTRIBUTED DYNAMIC LOAD-BALANCER 7

SW
. . . exchange populations with neighbors

to.move.doun = (my.population - doanstream.neighbor.population) / weight
to.move.up = (my.population - upperstream.neighbor.population) / weight

-- compare with upperstream neighbor
INT outgoing.particles:
BOOL try.again:
IF

to.move.up > threshold

-- put backwards upper limit in steps of size ‘delta’
SW

try.again := TRUE
WHILE try. again

SE’4
temporary.upper.limit := temporary.upper.limit - delta
. . . count outgoing particles
. . . test if the domain is becoming too small
IF

(outgoing.particles >= particles.to.give) OR domain.too.small
try.again := FALSE

TRUE
SKIP

TRUE
SKIP

. . . compare with downstream neighbor

FIG. 5. Load-balancer in the MD simulation.

5. FORMAL DESCRIPTION OF THE LOAD-BALANCER

Formally, the multi-processor system used for the MD simulation, the pipeline,
can be represented by an ordered set T= { 1, 2, n} of processors. Let Q be the set
of the particles to be distributed among the processors and let Z(i, t) be the particle
population of the processor i at iteration step t. Since the MD simulation involves
many particles, l(i, t) may be considered as a real number in [0, l] (the total
population will be normalized to 1, i.e., CT= I I(i, t) = 1 Vt). At each iteration step,*
every processor will try to maintain its population nearly equal to those of its

2 Because the load-balancer is embedded in the application, the iteration step t of the MD simulation
and that of the load-balancing algorithm are identical.

8 BOILLAT, BRUGlj, AND KROPF

neighbors. This can be achieved by exchanging l/m, (m > 2) of the population
difference with each immediate neighbor (m corresponds to the weight in the
algorithm of Fig. 3) i.e.,

46 t) - .G, f)
m

(j=i+ 1 or j=i- 1).

This results in the following iteration scheme

I(i, t+ l)=Z(i, t)-
l(i, t)-l(i- 1, t) I(i,t)-Qi+ 1, 1)

m m

l(i- l,t)(m-2) I(i, t)+I(i+ l), t) = if l<i<n
m

1(1, t+ l)=f(l, t)- 41, l) - 42, f)
m

(m- l)f(l, t)+1(2, t) =
m

I($ t + 1) = I(& t) -
l(n, t) - I(n - 1, t)

m

(m - 1) l(n, t) + f(n - 1, t) =
m

The last two iteration equations are sufficient to keep the total amount of particles
constant, i.e.,

i l(i,t)= i f(i,O) Vt>O.
i=l i=l

Let 15(t) be the vector (I(1, t), 42, t), l(n, t))=. Then each iteration step can be
represented by the linear system

where

PA
m

L(t + 1) = PL(t) tao,

n-l 1
1 m-2 1

1 m-2 1

1 m-2 1
1 m-2 1

0 1 m-l

A DISTRIBUTED DYNAMIC LOAD-BALANCER 9

THEOREM 1. Let L(0) be an initial distribution of particles, such that
x1= I l(i, 0) = 1, then if m Z 2

lim L(t)=i(l, l,..., l)T;
,-CC

i.e., the iteration scheme converges towards the uniform distribution.

Proof Note that L(t) = P’L(0). According to [171, the eigenvalues of P are

~
k

=(m-2)+2cos((k- l)rc/n)
> k = 1, 2, n,

m

and the characteristic vector vCk) associated with 1, has the following coordinates:

(k-1)x
vjk’= coS(2i- 1) 2n,

Let uCk) denote the normalized eigenvector t~(~)/llv(~)ll associated with uCk). Since
P is a symmetric matrix and all eigenvalues are different, the eigenvectors are
orthogonal and it is easy to represent the initial particle distribution as a linear
combination of the normalized eigenvectors:

L(0) = i (L(O), U(k)) U(k).
k=l

Let ak= (L(O), ~6~)). Since u(l)= (l/&)(1, 1, l)T, c1r = l/J;;. Now note that
A, = 1 and that 11,1 < 1 if k > 1 and m > 2. Since

then

P’L(O)= i aiA~u”‘,
i=l

lim P’L(0) = a1 u(l);
t-Z.2

i.e.,

lim P’L(0) = k (1, 1, l)T. 1
,-CC

THEOREM 2. The time complexity of the load-balancing algorithm is

O(n’).

Proof: The convergence speed of the iteration scheme depends in the worst case
on the second greatest modulus I of the eigenvalues of P, i.e., on

(m - 2) + 2 cos(rr/n)
m

10 BOILLAT,BRUG& AND KROPF

Let E < 1 be a suitable positive constant and let t be a positive integer, such that
A’ < E. Note that for large n, i.e., for large networks,

]Jm-2)+2cos(7d~)~ * 72
m mn2

Since

t = In .s/ln %,

it follows that

Since

In 1-L EL
(> n2 n2’

the complexity of the load-balancing algorithm is O(n’). 1

6. IMPLEMENTATION AND RESULTS

The computer system on which the load-balancer has been implemented and
tested is made up by eight 20-MHz T800 transputers (designated by W in Fig. 2)
with 256 Kbyte RAM each, connected as a ring, plus a 20-MHz T800 transputer
(designated by I/O in Fig. 2) with 2 Mbyte RAM which, being interfaced to the
host IBM PC/AT, provides I/O capabilities to the transputer network.

The physical system chosen as test case for evaluating the performance of the
load balancer consists of 4050 particles interacting by the Lennard-Jones 12-6
potential (a = 3.405A and E = 0.23804 Kcal/mole) which are enclosed in a square
box of 381.36R side length. The standard periodic boundary conditions are imposed
and a potential cutoff of 9.56A is assumed. A triangular lattice and a maxwellian
velocity distribution corresponding to a temperature of 50.3 K are chosen as initial
conditions. The temperature value is kept constant during the simulation by
resealing the particle velocities at each integration step.

The dynamics of the phase separation process has been followed to very late
times (1 ns) and the effectiveness of our approach to load-balancing is evident from
Fig. 6, where the execution time per MD step is reported with (continuous line) and
without (+ symbols) the load balancer. As one can note the execution time per step
increases somewhat even when the load-balancer is active. This is due to the
increasing number of in-range interactions the processors have to evaluate as the
particle condensation goes on. As Fig. 7 clearly shows the load-balancer has been

A DISTRIBUTED DYNAMIC LOAD-BALANCER 11

7

6.5

6

5.5

5

4.5

4

3.5

\.

A

3 L,,,I,,,,I,,,,I,,,,I,,,,I,,,,i,,,,I,,,,",,,',,,'
0 10 20 30 40 50 60 m 80 90 100

step (Thousands)

FIG. 6. Execution time per MD step vs. step number with (continuous line) and without (crosses)
load-balancer.

able along the whole simulation to keep the maximum population over processors
very near the ideal ratio of the particles to the number of processors (506 in our
case). In this run a weight factor of 4 was selected and a weighted particle
difference of 2 has been chosen as the triggering threshold for the load-balancer
intervention (threshold in Fig. 3 and Fig. 5).

mm
750

wo
10 20 30 40 50 60 70 80 90 II

step (Thousands)

3

FIG. 7. Maximum population over processors vs. MD step number with (continuous line) and
without (crosses) load-balancer.

12 BOILLAT, BRUG!?, AND KROPF

500
3

FIG. 8. Maximum population over processors vs. MD step number after the activation of the load-
balancer (continuous line) starting from the domain distribution shown in Fig. 1C to reach the equi-
librium population distribution of Fig. 1D. Crosses refer to the performance of a simpler load-balancing
algorithm.

To give a show of the load-balancer abilities when applied to situations of large
unbalance, two tests have been performed. In the first one, the load-balancer starts
from the equal area decomposition shown in Fig. 1C and as one can see from Fig. 8
(continuous line) population equilibrium is attained within a few tens of steps. As
a comparison, in the same figure the performance of a simpler load-balancing algo-
rithm [9] is reported (crosses) when applied to the same initial situation. The
second test starts from the same domain decomposition of the preceding one but

A B

FIG. 9. Further example of the effectiveness of the presently described load-balancer which takes
only 40 steps to reach the domain distribution shown on the right starting from the distribution depicted
on the left. The number of particles placed at the center of the simulation box is 1024.

A DISTRIBUTED DYNAMIC LOAD-BALANCER 13

with 1024 particles concentrated at the center of the simulation box. A few tens of
steps are needed by the load-balancer to pass from the unbalanced distribution of
Fig. 9A to the balanced one shown in Fig. 9B.

7. CONCLUSION

In conclusion, the above described approach to the load-balancing problem of
multi-processor systems features remarkable advantages as compared with more
traditional methods. Indeed, the present load-balancer

. removes the need of making the difficult choice of how long and how
frequently the load-balancer has to intervene, stealing away processors and com-
putational cycles from the MD simulation

. automatically tracks closely to the computation, because it acts at each
computational step

l does not require practically any additional communication imposed
synchronization among processors, because the necessary information exchange for
the load-balancer is completely embedded in the application and

l the parallel decomposition can be retained with this load-balancer also at
the algorithmical level, since it acts locally with the same grain of parallelism as the
MD simulation and does not need any global intervention.

A further important characteristic of this load-balancer is its rapidity in reaching
equilibrium even when the initial configuration is very unbalanced. The implemen-
tation of the load-balancer has shown that the algorithm in most cases converges
much faster than the worst case that complexity analysis has yielded. The presented
load-balancing algorithm shows that a global characteristic, the load equilibrium,
can be reached very efficiently by completely local information exchanges and
calculations. Moreover, the proposed load-balancing technique can be applied to
any application which can be decomposed in similar or equal parallel processes,
and it can be adapted for an arbitrary processor network topology [3].

ACKNOWLEDGMENTS

One of us (F.B.) acknowledges general support from Italian MPI-60%, and C.R.R.N.S.M fundings.

REFERENCES

1. R. HOCKNEY AND C. JESSHOPE, Parallel Compufers 2 (Hilger, Bristol, 1988).
2. J. HARP, C. JFSSHOPE, T. MUNTEAN, AND C. WHITBY~TREVENS, “Phase 1 of the Development and

Application of a Low Cost High Performance Multiprocessor Machine,” in ESPRIT 86: Results and
Achieuemenfs, Directorate General XIII ed. (Elsevier, Amsterdam, 1987).

14 BOILLAT, BRUGk, AND KROPF

3. J. BOILLAT AND P. KROPF, “A Fast Distributed Mapping Algorithm,” in CONPAR 90-VAPP IV.
edited by H. Burkhart (Springer, Berlin, l990), p. 405.

4. C. R. ASKEW, D. B. CARPENTER, J. T. CHALKER, A. J. G. HEY. M. MOORE, D. A. NICOLE. ANU

D. J. PRITCHARD, Paraitel Cornput. 6, 247 (1988).
5. D. RAPAPORT, Phys. Rev. A 36, 3288 (1987).
6. F. ABRAHAM, Adv. Phys. 35, 1 (1986).
7. INMOS, Transputer Rqfirence Manual (Prentice-Hall, Englewood Cliffs, NJ, 1988).
8. J. BOILLAT, Concurrency: Pracrice and Experience 2, 4 (1990).
9. F. BRUG~ AND S. FORNILI, Comput. Phys. Commun. 60, 39 (1990).

10. F. BRUGB, V. MARTORANA, AND S. FORNILI, in CONPAR 88, edited by C. Jesshope and K. Reinartz
(Cambridge Univ. Press, Cambridge, UK, 1989), p. 474.

11. F. BRUGB AND S. FORNILI, Comput. Phys. Commun. 60, 31 (1990).
12. B. BERNE AND G. HARP, Adu. Chem. Phys. 17, 63 (1970).
13. G. Fox, M. JOHNSON, G. LYZENGA, S. OTTO, J. SALOMON, AND D. WALKER, Solving Problems on

Concuren? Processors I (Prentice-Hall, Englewood Cliffs, NJ, 1988).
14. G. Fox, A. KOLAWA, AND R. WILLIAMS, in Hypercube Mulliprocessors, edited by M. Heath (SIAM,

Philadelphia, 1987), p. 114.
15. S. KIRKPATRICK, C. GELATT, AND M. VECCHI, Science 220, 671 (1983).
16. INMOS, OCCAM 2 Reference Manual (Prentice-Hall, Englewood ClifIs, NJ, 1988).
17. M. FIEDLER, Linear Algebra Appi. 5, 299 (1972).

